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ABSTRACT 

Approximated analytical methods for evaluation notch stress 

and strain under multiaxial loading are considered. Results 

from analytical methods are compared to results from elastic-

plastic finite element analysis. An engine bearing cap is 

evaluated under both methods, considering the services load 

from the combustion pressure and also the bolt tension. Linear 

kinematic hardening rule and Mises plasticity model have 

been considered. Results from analytical models and nonlinear 

finite element analysis are compared.  

INTRODUCTION 

Finding out stress and strain at notch areas is a mandatory step 

in the design of most mechanical components. From the 

fatigue analysis point of view, notches regions are often the 

preferred sites for crack initiation. If the component is 

subjected to variable loading, plastic deformation in the notch 

area can significantly decrease the durability of the 

component, often with undesirable failures. Besides, notch 

fatigue behavior is usually better represented by strain based 

approach, which demands the knowledge of notch of stress 

and strain magnitudes. 

Notches are found in most engineering structural components. 

Structural discontinuities such as shoulders, holes, fillets, 

grooves and keyways, are example of notches. In the notch, 

stress increases due to several reasons, e.g., complex 

geometrical details, defects in the fabrication process or 

failures in the assembling procedure. 

The amplification in the stress magnitude can be measured by 

the stress concentration factor (Kt), which relates the notch 

root stress to the nominal stress. The material’s elastic 

behavior also allows writing Kt as the ratio of notch root strain 

to the nominal strain. In a mathematical form one can state 
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given that /=E=constant.      (1.b) 

For simple geometries, stress concentration factor for elastic 

materials can be measured by analytical 
1,2

, experimental 
3–5

 

and numerical methods, as the finite  element  linear  

analysis 
6–10

. The later approach, however, is the common 

method used for Kt calculation of complex geometries and 

general load cases.  

If notch stress is higher than the material yield stress, Hooke’s 

law can not relate the notch stress () to the notch strain (). 
Consequently, both local strain and local stress no longer can 

be related to nominal stress and strain, respectively. Beyond 

the yield stress, notch stress and strain can be related to the 

relate to the respective nominal values by the stress and strain 

concentration factors (K and K , respectively), defined by 
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The elastic-plastic behavior of many materials can be obtained 

by experimental strain gage. Common engineering materials 

show stress-strain behavior that can be modeled by Ramberg-

Osgood equation, as follows 
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where: 

H is the monotonic cyclic strength and  

n is the monotonic cyclic exponent.  

For each material, the parameters H and n are adjusted to fit 

experimental results.  

If elastic-plastic finite element analysis is used for evaluated 

stress and strain of yielded components, small element size in 

the high-stress gradient regions is required for solution 

accuracy. Besides, a realistic representation of the nonlinear 

material stress-strain behavior is required
11

.  



Additionally, for a cyclic elastic-plastic analysis, a cyclic 

plasticity model is required. The cyclic model should be 

composed of three major components
12

:  

(a) a yield function, to describe the combinations of stress 

that will lead to plastic flow 

(b) a flow rule, to describe the relationship between the 

stresses and plastic strains during plastic deformation and 

(c) a hardening rule, to describe how the yield criterion 

changes with plastic straining. 

Although nonlinear finite element analysis can be used as an 

accurate tool for evaluating the cyclic notch stress–strain 

behavior, it is often a time-consuming and expensive method, 

particularly for long service load histories. For this reason, 

analytical methods that estimate the notch stress and strain are 

commonly used in fatigue design of components.  

The elastic stress concentration factor (Kt) required by 

analytical methods, can be obtained by linear finite element, 

specially for complex geometries. In this way, a combination 

of analytical methods and linear finite element analysis 

provides notch stress and strain.  

Perhaps the most widely used procedure for estimating notch 

strain in the plastic region is Neuber’s rule or equivalent 

approaches based on strain energy
12

. Several modifications of 

these rules
14-25

 have been derived in the last decades. 

Particularly, modifications proposed by Downling
14

 and 

Hoffmann and Seeger
15

 are addressed for dealing with 

proportional multiaxial stress.  

In this paper, fatigue life estimation of bearing cap subject to 

services loading is evaluated. Notch stress and strain on the 

bearing cap are calculated by nonlinear elastic-plastic finite 

element analysis. The numerical results are compared with 

results from analytical methods proposed by Dowling and 

Hoofmnan and Seeger. Results of analytical model are 

compared to elastic-plastic analysis results of the component 

for monotonic loading.  

After calculating notch stress and strain, the strain life 

approach is employed for fatigue estimation. Bolt tension and 

combustion pressure load lead to a multiaxial stress states in 

the relevant notch areas of the bearing cap. 

 

NEUBER’S RULE 

Neuber
26

 derived the theory for approximating notch stress 

concentration of a prismatic beam subjected to pure shear 

loading. Neuber’s rule states that the geometrical mean of 

stress and strain concentration factors remains constant during 

plastic deformation.  

 KKK 2

t     (4) 

Neuber’s rule overestimates the notch strain for typical plane 

strain components and provides good results for thin shell and 

plates parts
23

.  

For elastic nominal stress, Equations (1), (2) and (4) are 

combined to give 
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Notch stress () and strain () can be obtained by 

simultaneous solution of Equations 3 and 5, what can be done 

by graphical or numerical methods. Linear finite element 

analysis furnish the squared term on the right side of 

Equation 5. 

MULTIAXIAL GENERALIZATION OF 

NEUBER’S RULE  

Under proportional loads, multiaxial stress and strain at notch 

roots can be treated by several proposed extensions of 

Neuber’s rule
14,15,18,21

. Using the von Mises flow criterion to 

calculate equivalent stress, Neuber’s rules can be stated as  

eqeqeqeeqe ..     (6) 

Solutions of Equation 6 for proportional loads usually 

consider that ratios of principal stresses and/or ratio of 

principal strain remain constant during plastic deformation. 

Since Poisson ratio is not constant, such assumption provides 

acceptable results for small plastic deformation. 

Dowling’s approximation performs a multiaxial notch analysis 

by changing the material properties. The modulus of elasticity 

(E) and Ramberg-Osgood’s strength coefficient (H) are 

modified by the assumption that stress normal to the free 

surface is zero and also that principal strain ratio  2 and 

principal stress ratio  2 remain constant, viz. 
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So, the effective material properties can be written as 
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Neuber’s rule can be written in terms of the major principal 

stress and strain as
12
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is the equivalent von Mises stress for elastic analysis. 

Equations 11 are resolved in 1 and 1, as long as 
eeq is 

delivered by linear results of finite element analysis. 

After calculating 1 and 1, the second principal stress, 2, and 

strain, 2, can be calculated by Equations 7–8, respectively.  

The normal surface deformation's, 3, is calculated by 
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Hoffmann and Seeger
15

 also considered that the stress (3) 

normal to the surface is zero. For nominal elastic strain under 

proportional load, they proposed that Neuber’s rule can be 

written by 
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Equations 15 can be resolved in eq and eq, where 
eeq is 

calculated by Equation 12. 

Considering that principal strain ratio  2 remains constant 

during the plastic deformation, Equations 16-20 can be 

resolved in 1, 2, 1, 2 and 3. 

 21

eq

eq

1 . 



    (16) 

 21

eq

eq

2 . 



    (17) 

 )(. 21

eq

eq

3 



   (18) 

eq



 .

1

1

2

22

1



   (19) 

eq



 .

1

1

2

22

1



   (20) 

where 

eq

eq

E 




.2

1

2

1








  (21) 

and 

2

2
2

.1 







    (22) 

 

FEM ANALYSIS 

Elastic-plastic analysis was performed using the FEM 

package RADIOSS
25

 program. The linear kinematic plastic 

rule and the Mises yield function have been considered in 

the nonlinear analysis.  

The material’s monotonic properties are shown in Table 1 and 

the stress-strain curve is sketched in Figure 1.  

Table 1 – Material properties of bearing cap. 

Tensile Strength (Su) 850 MPa 

Yield Strength (Sy) 395 MPa 

Modulus of Elasticity (E) 210 GPa 

Poisson’s Ratio (u) 0.3 

Fatigue Strength (Se) 200 MPa 

Monotonic strength coefficent (H) 1400 MPa 

Monotonic strength exponent (n) 0.122 

Fatigue ductility coefficient (’f ) 0.31 

Fatigue ductility exponent (c) -0.621 

Fatigue strength coefficient (’f ) 1350 

Fatigue strength exponent (b) -0.0758 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

100

200

300

400

500

600

700

800

0 0.002 0.004 0.006 0.008 0.01 0.012

strain

M
P

a

 

Figure 1 – Stress-strain curve for bearing cap analysis. 

 

 



As shown in Figures 2–5, geometrical shape of bearing cap 

has been modeled by using parabolic tetra elements. Only a 

quarter of the bearing cup has modeled due to symmetries of 

load and geometry.  

Bolt is modeled by beam and rigid elements. Beam element is 

used to represent the length of the bolt. Rigid elements provide 

the connection between beam and tetra solid elements. Such 

connection is performed by considering the approximated area 

of contact of the bolt head with the bearing cap.  

 
(a)

 
(b) 

Figure 2 – Geometry and a quarter FE model for bearing cap. 

 

 

 
Figure 3 – FE model for bearing cap analysis. 

 

 

 

 

Figure 4 – FE meshing detail on region B. 

 

 

Figure 5 – FE meshing detail on region A. 

Meshing size was refined in the interested regions, as shown 

in Figure 3–5. In those regions, identified as areas A and B in 

Figure 3, typical element size is 0.5 mm. The area C has also 

been evaluated. 

The mesh refinement has been considered until get acceptable 

difference between averaged and unaveraged maximum 

principal stress on the notch areas (less than 5%).  

FE model has been first loaded with an axial force resulting 

from torque on the bearing cap bolt. Next, forces from 

combustion pressure transmitted by the crankshaft were 

considered, as illustrated in Figure 6. The pressure distribution 

is considered by a cosine function, with maximum value at the 

center of the cap, going to zero at the lateral. 

Load from combustion pressure has been increase to produce 

plastic strain in the bearing cap. The nominal values have been 

accordingly multiplied by 1.3, 1.6 e 2.0 to get the points for 

comparison in the plastic region of stress-strain curve.  

B

A 

A 

C 



 
Figure 6 – Pressure on the cap from cylinder fire. 

 

In Figure 7 is shown the symmetric planes where boundary 

conditions have been applied. The bearing cap’s surface that 

contacts the engine block has also been clamped. 
 

 
 

Figure 7 – FE boundary conditions. 
 

FATIGUE ANALYSIS 

The strain-based approach to life estimation of the bearing cap 

has been calculated by Morrow's equation, including the 

effects of the mean stress, given by
11
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Where 

 a  – total strain amplitude.  

’f  – fatigue ductility coefficient.  

c – fatigue ductility exponent.  

’f  – fatigue strength coefficient.  

’f  – fatigue strength coefficient.  

 m – mean stress. 

b – fatigue strength exponent.  

2Nf – number de reversals to failure. 

RESULTS 

The comparison of the three different approach has been done 

in terms of notch equivalent stress. Nevertheless, similar 

conclusions can be taken from comparison of the principal 

stresses. As nonlinear and linear analysis have been performed 

on the same meshing, the comparison could be done at each 

node. 

Results from nonlinear FEM analysis have been obtained 

directly from the post-processing of each load case: the 

principal stresses were acquired to evaluate Equation 12 

(without the upper e) and also the principal strains were 

obtained to be applied in Equation 22.  

Hoofmann-Seeger and Downling expressions have been 

performed from the results of FEM linear static analysis. 

Equations 11 and 15 have been resolved in 1 - 1 and eq- eq , 

respectively, by iterative numerical procedure. 

To exemplify the analyses, results for worst node in area B are 

shown in Table 2.  

Table 2 – FEM Linear Stresses and Strains. 

load 

factor 
e
1 

e
2 

e
1(MPa) 

e
2(MPa) 

1.0 1.458E03 5.724E04 297.7 27.7 

1.3 2.033E03 7.515E04 418.0 28.2 

1.6 2.603E03 9.301E04 537.4 29.0 

2.0 3.373E03 1.172E03 698.3 30.2 

 

After solving for each load, the notch equivalent stress for 

both expressions has been evaluated, as given in Table 3. 

Table 3 – Notch Equivalent Stress and Strains. 

area B Notch Equivalent Stress (MPa) 

strain  FEM Seeger Dowling 

1394.5 300.4 312.0 322.3 

1919.3 428.9 426.9 435.9 

2440.1 447.9 522.3 528.9 

3143.6 619.3 610.7 614.8 

 

Typical stress distributions are depicted in Figures 8–9. In 

Figure 9, maximum principal stress on the area B is shown.  

Comparative results obtained are depicted in Figures 10–12. 

The graphics are plotted with nominal micro-strain in the 

longitudinal axis and the notch stress in the vertical axis.  

In Figure 11 is shown the maximum notch stress in the area B. 

The values obtained from Dowling and Hoffman-Seeger 

analytical methods are close related. The maximum difference 

to FEM results is 10%.  

Symmetrical 

planes 

Vertical Restraint. 



Similar results can be observed from Figures 11 and 12. In 

both cases, there is a variation in the FEM results for the third 

point plot. The FEM model has been revised and no consistent 

reason was found for such behavior. The maximum difference 

to FEM results is 16% in the area A, and 18% in the area C. 

Areas with compressive principal stresses also have been 

focused. However, we had some difficulties to obtain results 

with Dowling approach. In the points analyzed, the effective 

strength coefficient (H) decreases significantly, also affecting 

the effective Poisson ratio. As fatigue problems are concerned 

to tensile areas, compressive areas were not considered.  

Fatigue life of bearing cap has been estimated considering a 

majority factor of 30% over the nominal load. The cyclic load 

is between (a) only bolt loading to (b) bolt load plus the force 

from combustion pressure.  

Considering Equation 22 and the fatigue parameters shown in 

Table 1, infinite life has been obtained for area B of the 

bearing cap.  

 

 

Figure 8 – Maximum principal stress distribution in the 

bearing cap. 

 

Figure 9 – Typical stress distribution in notch area B. 

 

 

Figure 10 – Notch stress vs. nominal strain – Area A. 

 

 

 

Figure 11 – Notch stress vs. nominal strain – Area B. 

 

Figure 12 – Notch stress vs. nominal strain – Area C. 

 

CONCLUSIONS 

The bearing cap has been evaluated for two analytical methods 

and for nonlinear finite element analysis. Results observed 

from both Dowling and Hoffmann–Seeger methods are 

encouraged. With notch stress and strain calculated, several 

strain life equation can be employed to calculate fatigue life. 



It is worth to note that the good agreement of models which 

consider constant ratios for principal stress and/or strain are 

close related to small plastic deformation
26

. If the yielding is 

achieve in an large area, results from close form expressions, 

like (11) and (15), move away from nonlinear analysis results.  

This study shows that it is possible to get accurate plastic 

stress and strain results using linear FEM analysis 

implementing a correction plastic rule. For fatigue analysis 

these models can also be implemented during the cycles 

counting, resulting in a faster analysis computation. 
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ABBREVIATIONS 

 1 – notch major principal strain; 

 2 – notch minimum principal strain; 

 3 – notch surface normal strain; 

 eq – notch equivalent strain; 

 a – total amplitude strain; 

 1 – notch major principal stress; 

 2 – notch minimum principal stress 

 3 – notch surface normal stress; 
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 eq – notch equivalent stress; 

 

e 1 – elastic major stress; 

e 2 – elastic minimum stress; 

e 3 – elastic surface normal stress; 

e eq – elastic equivalent stress; 

e 1 – elastic major strain; 

e 2 – elastic minimum strain; 

e 3 – elastic surface normal strain; 

e eq – elastic equivalent strain; 

E – modulus of elasticity. 

E*  – effective modulus of elasticity. 

n  – monotonic strength exponent. 

H  – monotonic strength coefficient. 

H*  – effective strength coefficient. 

’f  – fatigue ductility coefficient.  

c – fatigue ductility exponent.  

’f  – fatigue strength coefficient.  

b – fatigue strength exponent.  

2Nf – number de reversals to failure. 

  – Poison ratio. 

  – effective Poison ratio. 
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