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ABSTRACT 
This paper describes an alternative approach to calculate stress 

concentration factors using artificial neural networks. Neural 
networks have the ability to learn and turn this knowledge helpful 
for future use. Encourage this approach the needless of find out a 
mathematical expression between input and output data. Finite 
element simulations of tubular joints that complete the data set 
consider the common geometrical parameters of chord and brace 
members, and also the parameters defining the 3D geometry of 
the weld fillet. The procedure proposed represents an 
improvement in the tubular joints evaluation, both because it 
takes into account the effects of the weld geometry in the calculus 
of stress concentration factors and also provides another manner 
to extrapolate it. 

INTRODUCTION 
Tubular joints in offshore structures are connected by welding 

the end of brace members onto the external surface of the chord, 
causing high stress gradient in the welding zone. Accordingly, the 
stress peak achieves several times the nominal stresses of the 
brace members. The Stress Concentration Factor (SCF) is a 
measure frequently used to quantify that peak in the welded joint. 

Since the evaluation of the SCF for all offshore tubular joints 
seems to be impracticable, the main procedure accepted to 
accomplish that task is based on the following steps: a data set 
with some particular joints is organized and the SCF is evaluated 
for that joints. Further, semi-empiric expressions are formulated 
in order to achieve the SCF for similar joints. According to 
Gurney (1968), these expressions have the general formulation: 

FCT = C.aa..pb.yC.rd.(sinO)” (1) 
where C is a constant, LI, b, c, d and n are adjustable exponents 
and a, fi, 3: r and B are non-dimensional geometrical parameters 
defined in the Fig. 1. In this sense, several parametric expressions 
are available for the calculation of SCF, each one with its own 
characteristics. 

The stress concentration in welded tubular joints, however,’ is a 
difficult task to be modeled. Consequently, comparison of the 
existing parametric equations for similar joints sometimes shows 
considerable differences. This is due to the different definitions of 
hot spot stress that have been used and also to the difficulties of 
establishing a priori a mathematical expression to associate 
geometrical parameters and the SCF. Moreover, if welded 
geometry parameters were added in the mathematical model, the 
problems to formulate an expression raise. Since the phenomenon 
is highly complex, these are likely the leading sources of 
unsuitable results in several joints. 

These difficulties lead us to research an alternative approach to 
deal with the SCF estimate, which bring an improved manner to 
compose the data set and to evaluate the SCF. 

In the same manner that occurs in SCF evaluation by regression 
approach, a data set was taken from Finite Element (FE) analysis. 
The FE model used in this work, however, takes into account the 
weld fillet geometry by using three-dimensional isoparametric 
elements. Three-dimensional (3D) elements are shown to provide 
more accurate modeling of joints when compared to the 
commonly used shell elements, mainly because of their 3D 
nature. Accordingly, the stiffness of joint is more appropriately 
represented, since the weld fillet geometry works reducing the 
stress gradient, smoothing out the stress flow between brace and 
chord member. Furthermore, the SCF evaluation is 
straightforward achieved, without the need of extrapolating 
results, as prevalently occurs with shell element models. 



In the second phase, instead of regression expressions, Artificial 
Neural Networks (ANN) were applied in the SCF evaluation. The 
use of ANN is motivated by the needless of found an expression 
to associate the geometrical parameters to the SCF. 

Neural networks are mathematical models useful to handle 
complex tasks, with capacity of learning from a data set and turn 
the stored knowledge useful for subsequent use. The term “neural 
network” refers to a collection of neurons, their connections and 
the connection strengths between them. The knowledge is 
acquired during the learning process by changing the connection 
weights in order to reduce an error function. 

In this work ANN were trained for axial force and in plane 
bending moment (IPB) load cases. The applied data set contains 
Y joint configurations with several combinations for both 
members and weld geometrical parameters. The results were 
compared with existing expressions and some expected behavior 
of stress distribution were also checked. 

GENERATION OF DATABASE SET 

FINITE ELEMENT MESHING 
As larger platforms are designed and installed in increasingly 

deep water, the prediction of hot spot stress near the welds used in 
these connections has also been extremely difficult to evaluate by 
experimental procedures. In addition, over the past thirty years 
the computer machine speed has increased, allowing the 
development of efficient solvers and automatic meshing 
programs. Hence, since the early 1970s the finite element method 
has been the most used process in the calculus of SCF 
expressions. Several computer programs for automatic meshing 
tubular joints has been developed, initially based on flat shell 
elements and later with the inclusion of 3D element (Liaw,1987). 

In this work an automatic meshing program was used to 
produce the data set, which makes use of isoparametric solid 
elements (brick-8 nodes), with incompatible modes and quadratic 
integration model the tubular joint geometry. Using solid 
elements the complex geometry of weld fillet was represented, 
working as a stress gradient smoother. Furthermore, modeling the 
tubular joint with solid elements avoid the use of extrapolation 
procedures to attain the SCF, since the welded geometry is also 
modeled. So, as showed in the next item, with a correct choice of 
load magnitude acting in the brace member, the SCF is performed 
straightforward in the post-processing phase. In addition, the 
variability in weld geometry is likely to be a major cause of the 
observed scatter in fatigue life data (Engesvik,l988). 

Therefore, the influence of either the groove angle and the gap 
between chord and brace were included as non-dimensional 
geometrical parameters, as depicted in the Fig. 1. A typical Y 
joint from the automatic meshing program used in this work is 
portrayed in Fig. 2. 

MODEL CHARACTERISTICS 
The automatic meshing program used works by taking some 

non-dimensional geometrical parameters that define the welded 
tubular joint handled. In this sense, the classical parameters p, y, 
z, 8 and a (the later for axial force load case) are specified by the 
designer as well as the parameters that describe the welded 
geometry. 

It is important to mention the inclusion of the Set parameter, 
representing the position of SCF along the welded joint length. 
Considering that the FE solver provides stresses in all nodal 
points of the model, that parameter permits the study of stress 
distribution along the weld length. Consequently, the joint design 
can be improved, since the maximum SCF for the various load 
cases do not occurs at the same point. 

About 250 models were analyzed, determining a data set with 
almost 9000 points. The data set was produced by varying the 
non-dimensional parameters showed in Table 1 and calculating 
the von Mises stresses for each configuration. The variables used 
represent the geometrical ratios found in traditional regression 
analysis approach and, also, the weld fillet geometry. The latter, 
as depicted in Fig. 1, is represented by the groove angle and the 
gap between the chord and the brace members. Moreover, the 
position of stresses along the weld fillet was considered as a 
percentage value, which vary from 0% at the crown heel to 100% 
at crown toe, as depicted in Fig. 3. 

Table 1 - Parameters Range 

1-1 Minimum 11 Maximum I] 

B 0.4 0.8 
z 0.4 0.8 

The loads applied in the brace was enough to produce unitary 
membrane tension far from the joint and, accordingly, hot spot 
stress was obtained direct from FE post-processing. The axial 
force and IPB moment load cases were carried out. Gibstein 
(1987) showed that in IPB load is applied there are no meaningful 
differences whether the boundary conditions is considered 
clamped or simply supported. Thus, in all FE models we consider 
the primary member ends clamped. 

The data were fulfilled after almost 1000 hours of processing, 
using a Pentium 166 MHz computer, and the solver and post- 
processing of ALGOR (1997) software. After some convergence 
tests, we noticed that 40 divisions of weld fillet along its length 
were enough to overcoming the problem of refine the solid mesh 
employed, as illustrated in Fig. 4. 



NEURAL NETWORKS 

ARCHITECTURE 
Artificial neural networks are an attempt to simulate the 

functioning of human brain by virtue of massive parallel 
processing artificial neurons and a learning rule (Lipmann, 1987). 
The term ‘neural network’ refers to a group of neurons, and the 
connection strengths between them. One by one, the artificial 
neurons can perform trivial functions, but altogether, connected in 
form of a network, they are capable of solving complex tasks. 

A typical artificial neuron is depicted in Fig. 5. As showed, the 
neuron j receives signals from other neurons through the 
connections between them. Each incoming signal is multiplied by 
its connection strength, so that, the neuron acquires a sum of 
outputs of all neurons to which it is connected. Thus, the 
weighted sum is compared with a threshold of the neuronj, and if 
the summation exceeds the threshold the neuron sends a signal to 
other forward-connected neurons. The output of a typical neuron 
is performed by a non-linear function of weighted sum, as shown 
in Eq. (2). 

yj = F(~xi.ws 4,) 
(2) 

where F is a non-linear function, xi and wo are the inputs and the 
weights from ith input node to jth node and 9 is the threshold 
value for the j neuron. 

The most commonly threshold function F used is the logistic 
function showed in Fig. 6. Named logistic function, it adds non- 
linear characteristics to the neuron, which is essential in multi- 
layer networks. Further, as shown by Eqs(3) and (4), its 
derivative is straightforward, an important feature to learning 
process. 

F-L 
l+ewY 

F’=F(l-F) (4) 

The neuron depicted in Fig. 5 can be arranged in a network in a 
variety of ways by changing the number of neurons and/or layers, 
An illustrative multi-layer feed-forward network is depicted in 
Fig. 7. This is the most used neural network for the sake of its 
remarkable capability of deal with non-linear input-output 
mapping of general function and its easy implementation. 

As showed in Fig. 7, the network consists of an input layer, an 
output layer and hidden layers. The input layer commonly 
receives an input vector as well as the output layer is associated to 
output vector. In this work the input vector is associated to the 
non-parametric parameters showed in Table 1. The output layer is 
related to von Mises stresses performed by the solver for each 
configuration. One has the input and output variables of the 
phenomenon handled, so that the number of neurons required in 
the correspondent layers is direct. On the other hand, choose of 
the number of hidden layers and the number of neurons in the 
hidden layer neurons is the most difficult part in the network 
process. 
Although it is proved that any functional relationship can be 
mapped using a network with a single hidden layer and with a 
sufficient number of nodes (Wasserman,l989) and despite of 
efforts of some researchers to get an approximate formula 
(Haykin,l994), there is no reliable method for this purpose. In 
practice, the trial-and-error method has been the most used 
process to define the hidden layers. 

The weighted connections among neurons of each layer and the 
threshold parameters are used in the learning process, i.e., an 
iterative process to carry out an input-output mapping function 
for the FE data. The learning process is commonly performed by 
back-propagation algorithm, which is fundamentally an error 
minimization technique. The best input-output mapping is 
achieved by changing the weights coefficients and threshold 
parameters in a supervised learning process, i.e., using the actual 
output to check the network output. 

BACK-PROPAGATION ALGORITHM 
Back-propagation algorithm is covered in details in several 

works(Haykin, 1994), (Wasserman, 1989). The basic structure, 
however, can be condensed in some steps, as showed by 
Lipmann( 1987): 
1 .Initialize the weights and the thresholds to some random values. 
2.Present a new continuous-valued input vector {X,,X~,....,X,,- 

1. X,} and specify the desired outputs Cd,,, dl,...d n-l,d n}. 
3.Calculate the actual output, says oj At each node, calculate the 

weighted sum of the inputs and use the sigmoid non-linearity 
defined by equation 2. 

4.Adapt weights: using a recursive algorithm at the output node 
and working back, adjust the weights by 

W~(t + I)= We + rlSjXj 

where Wij is the weight from ith node to jth node, S is the error 
at jth node, and n is the gain term constant. 
If j is an output layer node then 

Sj=(dj-Oj).Oj.(l-oj) 

Ifj is an hidden layer node then 

where the summation is performed over all the nodes in the layer 
above the node j. 

5.Repeat by going to step 2 until an expected convergence value 
is attained . 

RESULTS. 
The stresses provide by ANN were compared with FE analysis 

results. In this sense, an usually adopted procedure is to divide the 
data in two sets: the training set and the testing set. The earlier is 
used to teach the network and the later is used to assure that the 
network can recognize patterns that it have never seen before. 



Therefore, the designer can determine whether the network found 
the intrinsic relations between input and output data or just 
“memorize” the training set. 

In this work, we randomize the data and separate the testing set 
and the training set in the proportion of 1:4. In the IPB load case, 
the average error over the training set was 2 % and 9 % 
considering the testing set. Similarly, we have , 3 % and 12 % in 
the axial force load case. 

The network configuration obtained for the axial force presents 
2 hidden layers, one near the input layer with 15 neurons and 
other near the output with 5 neurons. It was used as input 
variables the parameters showed in the table 1. Likewise, for the 
IPB load case the network also presents 2 hidden layers, with 30 
and 20 neurons, respectively. 

The ANN results were compared with the formulations of 
Kuang (1975), and UEG (1985). As showed in Figs. 8 to 11, the 
agreement with the formulations is acceptable, since there are 
errors evolved with both procedures. It is worth to mention that 
FE analysis using shell elements produce excessive SCF values, 
either for the absence of the weld fillet or the difficulties to obtain 
experimental data. 

ADVANTAGES AND DRAWBACKS 
The main purpose here is to constitute an alternative tool to 

calculate the SCF, which concepts avoid the need of place a 
mathematical expression. The neural network, after trained, is 
able to accomplish such task straightforward. 

It was proved that feed forward neural networks, with one 
hidden layer, can approximate complex functions (Wasserman, 
1989). However, there are no reliable suggestions about the 
hidden layer structure, i.e., the number of hidden layers and the 
how many neurons in each one. In fact, we have adjusted more 
than 10 networks until attain appropriated formations. The trial- 
and-error method still remains as the most used approach to 
produce some useful results with ANN. Hence, the training 
process, considering both load cases took about 300 hours of time 
processing, using a Pentium 166h4Hz. 

A drawback of neural network approach is the final result 
exposition. Neural networks store the knowledge in a different 
fashion, compared with traditional regression equations. 
Certainly, the generalization, i.e., querying the network about 
training patterns that it has never seen during the training time, is 
performed by a weighted sum using a lot of network parameters. 
Consequently, isolated effects of the network parameters on the 
calculated SCF are difftcult to visualize. Besides, the range of 
sigmoid function is 0 to 1, so that one have to scale output values 
to that range to get an suitable comparison. In fact, the replace of 
a simple computation of a final regression expression by an 
routine program represents a disadvantage that can be easier 
defeated. 

Indeed, the main drawback in neural networks approach is the 
training time. As the hidden layers structure is unknown, trial- 
and-error method is still the best method to find out an suitable 
solution. Besides, the learning algorithm is based in the steepest 
descent method, with some modifications in order to increase the 
performance. This method may leads the surface of error function 
to flat regions, and the training almost paralyze. Sometimes a 
simple modification in the learning parameters is enough to 
increase the training speed. Otherwise, the structure of hidden 
layers need to be altered. 

CONCLUDING REMARKS 
The use of ANN to evaluate SCF was reported. The results 

encourage future works in order to compare the performance of 
ANN with others geometrical joints and/or out plane bending 
moment load case. In fact, we are not proposing a strong 
modification in the fatigue life evaluation procedures once the 
tool we are using need to be better assessed. 

Another noticing point is the 3D solid FE models. With the 
increased performance of computers, the prohibitive costs 
evolved in FE analysis have been reduced, so that automatic 
meshing programs for 3D solid models can be used to produce 
new tubular joints data. Moreover, the SCF value is achieved 
straightforward, avoiding the extrapolation normally associated 
with shell models. 

In this work, the authors purpose a review of traditional method 
of evaluation the SCF, in the sense of substitute the traditional 
concepts which usually groups stresses and/or its effects by 
components. Moreover, we purpose the modeling of the actual 
joint geometry, in order to quantify, as better as possible, the tri- 
axial stress that occurs in the hot spot. 

In the light of the work on SCF evaluation reported above, the 
following conclusions can be placed: 
. The weld geometry inclusion affects the SCF value. As 

showed in Fig. 8, in some cases the SCF vary by 25% with 
the groove angle, allowing a better assessment of fatigue life. 

. The including of Set parameter as the SCF position in the 
weld length permits a more rationally association of different 
load cases. It is known that the SCF position in the axial 
force case moves from crown to saddle, as the heel angle 
increase. Such expected result was confirmed as depicted in 
Fig. 12, as well as for the IPB moment load case (Fig. 13). 

. The final network result is a set of numbers composed by 
weights and thresholds. The structure of that output 
difficulties the utilization of neural networks as a tool that 
can be accessed quickly, since the user will need at least a 
microcomputer. On the other hand, it is an easy task the 
programming of an algorithm to perform the comprised 
algebra. 

. A suggestion for future work, is the application of neural 
networks for another joint types (K, X, DK, etc.) and in the 
ultimate capacity evaluation of tubular joints, usually 
performed combining experimental and FE data, followed by 
a regression expression. 

. Using 3D solid model automatic meshing was the key step to 
carry out the data basis. This work would have no meaning if 
we had to produce each solid mesh one by one. 



NOMENCLATURE 
ANN = Artificial Neural Networks. 
D,d = chord and brace diameters. 
G = gap in the weld root between chord and brace. 
L = chord length. 
SCF = stress concentration factor. 
Set = % of weld fillet length stem from crown heel. 
T, t = chord and brace thickness. 
Wij = weight between neurons i and j. 
a = 2LlD. 
a =d/D. 
Y = D/2T 

El 
=t/T. 
= angle between brace and chord (hell). 

as = weld fillet groove angle. 
= learning rate. 
= error value at neuron j. 
= neuron j threshold. 
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where: detail A 

L length of chord between constraints. 

D chord and brace diameters. 

d brace diameter. 

T chord thickness 

t brace thickness. 

G gap between chord and brace in the weld root. 

as groove angle. 

8 included angle between chord and brace. 

a =2L/D 

P =d/D 

Y = D 12T 

T = t/T 

Figure 1 - Geometrical parameters definition. 
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Figure 2 An example of automatic meshing joint. 
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Figure 3 Position of stress value as a weld length percentage 
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Figure 4 - Mesh convergence test. 
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Figure 5 - An illustrative artificial neuron. 
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Figure 6 - Sigmoid Activation Function 
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Figure 7 - A typical multi-layer neural network. 
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Figure 8 - Comparison of results. In plane bending moment case. 
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Figure 9 - Comparison of results. In plane bending moment case. 
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Figure 10 - Comparison of results. Axial force case. 
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Figure 11 - Comparison of results. Axial force case. 
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Figure 12 - Variation of SCF position in the weld length. In plane bending 
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Figure 13 - Variation of SCF position in the weld length. Axial force case. 
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